伺服驱动器 RS485 通信协议

伺服驱动器 RS485 通讯口在与上位机通信时,服从本文所述 Modbus-RTU 通讯协议;每一个字节为 10 位:一个起始位,8 个数据位,1 个停止位;

支持下述三种 Modbus 功能码指令:

(注: 在非广播模式下,指令格式和应答格式中,驱动器地址字节必须和驱动器 PA51 号参数设置相一致;在广播模式下,从机不需要做出应答)

1、读驱动器内存数据指令,其具体指令与应答的数据帧格式如下所示:

指令格式(十六进制)					
格式字节编号	指令名称	指令内容	指令说明		
0	驱动器地址	0x00~0xff	0x00 为广播模式		
1	功能码	0x03	读驱动器内存数据		
2	寄存器起始地址高位	0x00~0xff	0x0000~0x0017: 读驱动器 DP-SPd~DP-rES 监视画面下的数据 (对应关系如下表所示)		
3	寄存器起始地址低位	0x00~0xFF	0x0064~0x009F: 读驱动器参数 PA0~PA59 内容		
4	读取寄存器数量高位	0x00	一条指令最多能读 20 个寄存器内容		
5	读取寄存器数量低位	0x00~0x14	(寄存器是 16 位数据)		
6	CRC 校验高位	0x00~0xFF			
7	CRC 校验低位	0x00~0xFF			
		应答格式(十六	进制)		
格式字节编号	指令名称	指令内容	指令说明数据		
0	驱动器地址	0x01~0xff	同对应指令格式中的驱动器地址		
1	功能码	0x03	读驱动器内存数		
2	字节数	0x00~0x28	是指令所要读取寄存器数的两倍		
n+1	读取寄存器内容高位	0x00~0xFF	n=2~N 的偶数,		
n+2	读取寄存器内容低位	0x00~0xFF	N 为字节数,字节数为偶数		
N+3	CRC 校验高位	0x00~0xFF	例: 若字节数为 4,则帧的第 3、4、5、6 个		
N+4	CRC 校验低位	0x00~0xFF	字节分别为所读取的两个寄存器的高位和低位,第7、8个字节为帧的最后两个字节,是帧的校验字节		

驱动器 DP 监视画面下各监视数据的通讯地址对照表:

监视数据	通讯地址	监视数据	通讯地址
DP-SPd	0x00	DP-CS	0x0C
DP-PoS	0x01	DP-Ct	0x0D
DP-PoS.	0x02	DP-APo	0x0E
DP-CPo	0x03	DP-In	0x0F
DP- CPo.	0x04	DP-oUt	0x10
DP-EPo	0x05	DP-Cod	0x11
DP- EPo.	0x06	DP-rn	0x12
DP-trq	0x07	DP-Err	0x13
DP-I	0x08	DP-tL	0x14
DP-LSP	0x09	DP-IA	0x15
DP-Cnt	0x0A	DP-IC	0x16
DP-Frq	0x0B	DP-rES	0x17

2、写驱动器内存数据指令,其具体指令与应答的数据帧格式如下所示:

指令格式(十六进制)					
格式字节编号	指令名称	指令内容	指令说明		
0	驱动器地址	0x00~0xff	0x00 为广播模式		
1	功能码	0x10	写驱动器内存数据		
2	起始地址高位	0x00~0xFF	0x0064~0x009F:		
3	起始地址低位	0x00~0xFF	写驱动器参数 PA0~PA59 内容		
4	写寄存器数量高位	0x00	一条指令最多改写 20 个寄存器内容		
5	写寄存器数量低位	0x00~0x14	(寄存器是 16 位数据)		
6	字节数	0x00~0x28	是指令所要改写寄存器数的两倍		
n+5	写寄存器内容高位	0x00~0xFF	n=2~N 的偶数, N 为字节数,字节数为偶数		
n+6	写寄存器内容低位	0x00~0xFF	例: 若字节数为 4,则帧的第 7、8、9、10 个字节分别为		
N+7	CRC 校验高位	0x00~0xFF	所写的两个寄存器的高位和低位,第11、12个字节为帧的		
N+8	CRC 校验低位	0x00~0xFF	最后两个字节,是帧的校验字节		
应答格式(十六进制)					
格式字节编号	指令名称	指令内容	指令说明		
0	驱动器地址	0x01~0xff	同对应指令格式中的驱动器地址		
1	功能码	0x10	写驱动器内存数据		
2	起始地址高位	0x00	写驱动器参数 PA0~PA59 内容		
3	起始地址低位	0x64~0x9F	与驱奶品多数 FAU~FA35 内谷		
4	写寄存器数量高位	0x00	一条指令最多改写 20 个寄存器内容		
5	写寄存器数量低位	0x00~0x14	(寄存器是 16 位数据)		
6	CRC 校验高位	0x00~0xFF			
7	CRC 校验低位	0x00~0xFF			

7 【CRC 校验低位 【0x00~0xFF】 3、驱动器执行内部操作指令,其指令与应答的帧格式如下所示(有两种格式,由不同驱动器软件版本 支持):(1)、下述格式仅在驱动器软件版本小于 705X (PA2) 中支持

指令格式(十六进制)						
格式字节编号		指令名称 指令国		內容	指令说明	
0	马	驱动器地址 0x00~0		0xff	0x00 为广播模式	
1		功能码	0x0	6		驱动器执行内部操作
2	内部	操作代码高位	0x0	0	0, 0000 A, EE, 48.1/c	
3	内部	操作代码低位	0x0	0	0x0000 为 EE 操作	
4	操作	作类型码高位	0x0	0	0x0001:EE	-Set 操作;0x0002:EE-rd 操作 0x0003:EE-bA 操作;
5	操作	作类型码低位	0x01~0x05		0x0004:EE-rS 操作; 0x0005:EE-dEF 操作	
6	CF	RC 校验高位	0x00~0xFF			
7	CF	CRC 校验低位 (xFF		
应答格式(十六进制)					制)	
格式字节编号		指令名称	指令名称		á 令内容	指令说明
0	0		址	02	x01~0xff	同对应指令格式中的驱动器地址
1	1 功能码				0x06	驱动器执行内部操作
2	2		内部操作代码高位		0x00	0x0000 为 EE 操作
3		内部操作代码低位			0x00	0x00000 为 EE 採作
4		操作类型码	引高位		0x00	0x0000: 正在操作中; 0x0001~x0005: 操作完
5 操作类型		操作类型码	低位 0x00~0x05		00~0x05	成指令要求 的操作类型码
6	6 CRC 校验高		哥位	0x	.00~0xFF	
7	7		CRC 校验低位		00~0xFF	

(2)、下述格式仅在驱动器软件版本大等于705X(PA2)中支持

指令格式(十六进制)							
松子产业位口							
格式字节编号	指令名称	指令内容	指令说明				
0	驱动器地址	0x00~0xff	0x00 为广播模式				
1	功能码	0x10	写驱动器内存数据				
2	起始地址高位	0x00	EE 操作				
3	起始地址低位	0x3A	EL 採件				
4	写寄存器数量高位	0x00	EE 操作对应一个寄存器				
5	写寄存器数量低位	0x01	DD 採作构型 可存储				
6	字节数	0x02	是指令所要改写寄存器数的两倍				
7	改写寄存器内容高位	0x00~0x00	0x0001:EE-Set 操作; 0x0002:EE-rd 操作;				
8	改写寄存器内容低位	0x01~0x05	0x0003:EE-bA 操作; 0x0004:EE-rS 操作;				
8	以可可行前的行队位	0.001~0.003	0x0005:EE-dEF 操作				
9	CRC 校验高位	0x00~0xFF					
10	CRC 校验低位	0x00~0xFF					
		应答格式 (十:	六进制)				
格式字节编号	指令名称	指令内容	指令说明				
0	驱动器地址	0x01~0xff	同对应指令格式中的驱动器地址				
1	功能码	0x10	写驱动器内存数据				
2	起始地址高位	0x00	EE 操作				
3	起始地址低位	0x3A	EE 採作				
4	写寄存器数量高位	0x00	EE 操作对应一个寄存器				
5	写寄存器数量低位	0x01	CC 採作列型 千可付命				
6	CRC 校验高位	0x00~0xFF					
7	CRC 校验低位	0x00~0xFF					

4、驱动器在对接收的数据进行校验后,若检测出错误,则应答码为:

	出错应答格式(十六进制)					
格式字节编号	式字节编号 指令名称 指令内容		指令说明			
0	驱动器地址	0x01~0xff	固定为 0x01			
1	出错码	对应功能码+0x80	例:若读操作校验出错,则出错码为读操作功能码+0x80			
2	出错类型码	0x04				
4	CRC 校验高位	0x00~0xFF				
5	CRC 校验低位	0x00~0xFF				

注: 红色为修改部分

修订记录						
序号	序号 修改位置 修改时间 修改内容					
1	3, (2)	2013-7-8	新的 EE 操作通讯命令以及驱动器软件版本支持			